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ABSTRACT 

The GSFC (12/66) model of the main geomagnetic field uses linear 
and parabolic terms in time, to represent secular change over the in­
terval 1900-1965. The predicted field is compared with observatory 
annual means to investigate systematic residuals. Deviations of the 
order of lOOy occur for short spans of years and only in limited re­
gions. Otherwise, the trends of the computed field parallel the obser­
vations. Secular-change charts agree well with those drawn by earlier 
analyses. 

The westward drift is generally apparent in the vector representa­
tion of the harmonic coefficients, except that a few terms predominantly 
undergo an amplitude change. The components below (gS6, hs6) that 
show a recognizable eastward drift a r e  the (3,2), (5,1), and (5,2) terms. 

Both dipole poles move smoothly northwestward over the interval, 
whereas the dipole position initially drifts eastward, reverses direction 
near 1920, and then moves westward at a rate up to about 0.07 degrees 
per year. Its 1965 position is found to be 78.8'N, 7O.O0W. 
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T H E  GEOMAGNETIC SECULAR VARIATION 
1900 - 1965* 

by 

Joseph C. Cain and Shirley J. Hendricks 


Goddard Space FZight Center 

INTRODUCTION 

In the last few centuries over a hundred papers have been written concerning the main geomag­
netic field and its secular variation. These research efforts have followed two main lines of 
approach: (1) the data from fixed observatories o r  relocatable positions (repeat stations) are 
compared quantitatively over a year o r  two and the differences by components contoured on charts. 
These secular-change, o r  isoporic, charts can be compared at intervals (e.g., decades) to attempt 
to learn how the patterns are changing with time. (2) Magnetic charts for given epochs are con­
structed, using survey observations reduced to the epoch of the chart. These charts are subjected 
to spherical-harmonic analysis and the results compared for  several epochs (Mauersberger, 1952; 
McDonald and Gunst, 1967). 

Recently we have chosen a different approach making a numerical fitting to all of the obser­
vational data available through the Magnetic Division of the United States Coast and Geodetic Sur­
vey for the period 1900-1964 plus some recent global satellite data acquired by the O W - 2  satellite. 
The result of this work, designated the GSFC(12/66) field model (Cain et al., 1967)) is intended 
for use as an initial tool in evaluating time variations in the field observed by OGO-2. A set of 
120 spherical harmonics of the internal potential were obtained, including their first and second 
time derivatives. 

The accuracy of this expansion in matching the observational data was expressed in terms of 
the residuals of f i t  by type of data, component, and epoch. It was shown that the non-satellite data 
was scattered about the f i t  with a Gaussian distribution (u - 12074, apart f rom some higher-than-
Gaussian tails. Over half the data of a given component lay within lOOy, 75 percent within 200y 
and 95 percent within 500y of the fit. The distribution by component varied slightly, with the 
Gaussian "core" of the A2 distribution being the widest at 210y, whereas the total field distribution 
(with a l O O y  core) was the narrowest. Inspection of the data makes it clear that the large non-
Gaussian excursions of the survey data about the fitting surface are due to crustal anomalies. 

*This  paper w a s  presented at the International Union of Geodesy and Geophysics 14th General Assembly St. Gall, Switzerland, 
September 30, 1967. 



(Considering the fact that the distributions were obtained without our making any selection of the 
observations, and no corrections were made for  short period variations, it is remarkable that 
only 5 percent of the data f a l l  outside the 5007 limit.) 

The satellite data are free from the influence of these crustal anomalies and depart by much 
less from the fitting surface. The OGO-2 total field data used were taken from a magnetically 
quiet period (October 29-November 15, 1965) and deviated with an almost Gaussian distribution 
whose constant was 12y. The root-mean-square residuals of the survey data (those differing by 
more than 20007 were rejected) were of the order of 180-260y for  individual years over the inter­
val 1906-1964, after decreasing from a peak of 320y in 1900. It was suggested in the previous 
paper that there may thus be systematic deviations of the secular change estimates from the 
fitting surface. 

In creating the GSFC(12/66) field model, a deviation was made from previous practice. No 
special heavy weighting was given to the observatory data included in the fit.  As explained in the 
discussion of the GSFC(12/66) derivation, the earlier evaluations (Cain et al., 1965; Hendricks 
and Cain, 1966; and Cain, 1966) used very heavy relative weights fo r  the observatory data because 
these are more accurate than the field survey data. However, these analyses showed that the 
scatter of the observatory data was not appreciably different from that of the rest of the obser­
vations; the main disturbing factor is the presence of crustal anomalies and not measurement in­
accuracies. The observatory annual means were thus entered into the fit with the same relative 
weights as the other surface data. 

In past work on secular change, displays of comparisons between the observational data and 
the results of analysis have been surprisingly few. This paper shows how the parabolic series 
for  the spherical harmonic coefficients matches the field variations measured at selected mag­
netic observatories, and points out how some features of secular change compare with those re­
ported in past papers. 

C 0MPARISO N WITH 0BSERVATORY ANNUA1 MEANS 

Appendix A, consisting of a map (Figure Al) and 212 graphs (Figures A2 through A213) shows 
the results of comparing the field components computed from the GSFC(12/66) model with annual 
means observed at a selection of magnetic observatories. (Figure A1 shows the location of most 
of the observatories.) The graphs (plotted automatically) are arranged alphabetically by obser­
vatory name. An observatory is omitted only if it offers less than five annual means. Under each 
observatory's name is its latest location, given by geodetic longitude and latitude in decimal de­
g rees  (positive east and north) and its altitude in kilometers, if known and above 100 meters. The 
vertical scales, arranged from left to right, show H and Z in gammas with l O O O y  between abscissa 
( Z  positive down), and D in degrees (positive eastward) at 2-degree intervals. The computed 
values are traced by the solid lines and are labeled on the right side according as they a r e  H ,  D ,  

o r  z. There is a break in the computed curves if  the observatory was moved. The calculations 
are made as appropriate to the site of observation. 
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The observed annual means are plotted as e for  H ,  o for D ,  and a for  Z .  In reproduction, 
these symbols are not always clear but may appear as filled circles or squares. (The symbols H ,  

D, o r  Z also appear before the first hourly mean for each graph, as appropriate.) The computed 
values a r e  fed to the cathode-ray-tube plotter for each year for  which there are observations of a 
component. The plotter beam is left on between points and t races  out a straight line. The con­
tinuous curves thus appear lighter fo r  those years fo r  which observed means are missing, since 
the beam moves more quickly; and, whereas a continuous set of points seems to give a smooth 
curve, large gaps in the data (e.g., Chelyuskin, Hel) result in  a straight line connecting the points. 

One feature of the plots is that the observed data occasionally disappear from the top o r  
bottom of the plots. This problem arose in imperfections in the computer algorithm which was 
computed in order to give a scale that would suit all graphs. Since only a few plots were affected 
and the algorithm was already quite complex, it was decided to omit the worst offenders and keep 
the rest. Thus in a few instances (e.g., Dombas z before 1928) there are more observed data 
than appear on the graphs. The fact that observed and measured data often parallel each other 
with up to a few hundred gammas displacement (e.g., Alibag) suggests that the absolute differences 
are due to crustal anomalies. This view is supported by such examples as Honolulu, where the 
observed values hopped from one side of the computed D and H curves when the station was 
moved, around 1947. The question then arises: does the total observed secular change represent 
that of the main field, or does it include a contribution from crustal matter with a "soft" perme­
ability? Here we assume that the changes with time in the anomaly field are unimportant; they 
a r e  probably of the order of the percentage secular change multiplied by the size of the anomaly. 
Thus, for the 95 percent of the data within 500y, variations of the anomaly field due to a change of 
the main field by a few percent would represent only a few gammas. The graphs indicate that the 
oscillation of the data from the fitting surface is more often of the order of 1OOy.  

Eleman (1966) has pointed out another factor regarding the influence of anomalies. If a con­
stant anomaly causes the observed annual means H and D to deviate from the normal field H, and 
DN,then a representation of secular change in t e rms  of H and D can be erroneous. If 6 = D, - D ,  

the secular change of the normal field is given by 

DN 5 (H/H~)
6 - (H/H,) s , 

provided that 6 is sufficiently small, so that C O S  6 x 1 and s i n  6 x 6 .  Eleman showed that for  
Kiruna (1954-1955) the second t e rms  amount to  about 1minute per  year for D and 4y per  year for  
H. A plot of the data in  the orthogonal components x ,Y ,and 2 should eliminate any concern over 
this geometric interaction. We have chosen to make the comparison here in t e rms  of the observed 
values, since at this stage such refinements are not essential. 

If the displacement due to crustal anomalies is taken into account, curve trends can be prof­
itably compared with the observations. Considering that the f i t  was made to a selection of all data 
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without any corrections for storm variations o r  other transient effects such as the diurnal varia­
tions, the agreement is, in general, fairly good. Fo r  most observatories, the computed and meas­
ured H component trends not only are very nearly parallel but also show little absolute displace­
ment. Declination trends agree somewhat less well. The vertical intensity curves show the 
largest displacements and the poorest agreement of the curves as a whole, and the largest scatter 
of individual points. 

Significant discrepancies between predicted and observed data occur at the western edge of 
the Indian Ocean. Mauritius vertical-intensity and Tananarive declination curves have a smooth 
parabolic shape that differs considerably from the computed curves. Alibag vertical intensity, 
after tracking very well for  the first 40 years, now shows an increasing deviation from computed 
values. 

For  most of the other graphs, the deviations from the computed curves must be real because 
they exceed any possible e r r o r s  of measurement; but generally they can be regarded as second-
order perturbations from the main trend of secular change. These deviations can matter seriously 
when the field model is used to compute a reference field, particularly when extrapolating beyond 
1965. 

A relationship may exist between the earth rotation rate and secular change (Dicke, 1966). In 
the period 1900-1920, for example, there may have been a short-lived reversal  of the slowing of 
the earth's rotation rate that has otherwise appeared to be almost constant from 1800 through 1950 
(Munk and MacDonald, 1960). The high residuals of f i t  from 1900 to 1910 noted in the previous 
paper (Cain et al., 1967) may have been related to this phenomena. In the absence of 18th-century 
survey data, it is uncertain that such an increase was not due to the numerical process of least 
squares, where the residuals are sometimes largest near the fringes of the data set-particularly 
when the data distribution is relatively thin (as it is for 1900-1910). 

However, the graphs in Appendix A do show a definite trend away from the parabolic curves 
for  1900-1910 for  some components and stations. The curves for  all English and European ob­
servatories (e.g., Bochum, Stonyhurst, Kew, DeBilt, Greenwich, etc.) show that the measured 
secular change in H is significantly more positive than that computed. Likewise, f o r  the same 
area the secular change in declination is more negative than that predicted. The boundaries of 
this phenomenon are somewhat vague but it is clearly not present in  the Pacific, South America, 
and Asia (e.g., Melbourne, Hong Kong, Kakioka, Christchurch, Kodaikanal, Huancayo, Santiago, 
Colaba, etc.). In the United States (Cheltenham, Baldwin, Sitka) and central Russia (Sverdlovsk) 
the higher observed secular change in H is evident, but not the corresponding disparity in decli­
nation. It is undoubtedly such irregularities that have led investigators (e.g., Chapman and 
Bartels, 1940, p. 130) to conclude that secular variation is a regional phenomenon. Although the 
deviations seem to correlate for  observing stations in a given region so that a very accurate 
mathematical model would require their inclusion in some way, it is apparent that the general 
character of secular change is well enough represented by this model. 
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C O M P A R I S O N  W I T H  EARLIER I S O P O R I C  C H A R T S  

Using the GSFC(12/66) coefficients it is possible to compute the secular change of the com­
ponents at any epoch. This is a simple process fo r  the orthogonal components (differentiating the 
expressions for those components and evaluating -0ir ), but the representation of H ,D ,  and re­
quires special expansions. It is therefore simpler to compute the field for  a small increment of 
time (e.g., 0.5 year) on either side of an epoch and take the difference. This procedure was 
carried out for the epochs 1912.5, 1922.5, 1932.5, and 1942.5 for the components H ,  I, X, Y, Z, 
and F and isoporic charts drawn by means of an automatic contouring procedure similar to that 
described by Cain and Neilon (1963). These charts appear in Appendix B along with reproductions 
of the corresponding ones from Vestine et al. (1947). These charts may also be compared with 
those fo r  1922 by Fisk (Chapman and Bartels, 1940, p. 115-119). 

Comparison with the earlier charts shows in all instances the same basic cell structure. The 
GSFC-map extreme values for the force components differ by a few tens of gammas per year 
from the values given by Vestine et al. and generally have a smaller absolute magnitude. For  the 
inclination charts, the agreement with Vestine is within a few minutes per  year for the center 
cells. Comparison with the diagrams by Fisk for 1922 also leads to the conclusion that the GSFC 
extreme values are of smaller absolute value than those on the earlier works. This suggests that 
the analysis using only 120 spherical harmonics may give too smooth a picture of the secular 
change patterns. 

T H E  G E O M A G N E T I C  SECULAR V A R I A T I O N  F I E L D  IN 1965 

For  those wishing to use the GSFC(12/66) model as a reference at current epochs, Appendix C 
presents a set  of surface charts for 1965.0 (Figures C1 through C13). These closely agree with 
the U. S. World Magnetic Charts for the same epoch; although, as previously noted in the com­
parison with the earlier isoporic charts, the GSFC(12/66) patterns are slightly broader and less 
intense. 

Comparing the computed rate of change since 1960 with that observed at various observatories 
shows some systematic deviations over certain areas of the earth. Fo r  example, the observed 
rate of change in the vertical component over South America is of the order of 40 gammas per 
year greater than the computed rate. Increasing the computed rate for the area by this amount 
would sharpen the low cell pattern to the northeast and bring the GSFC(12/66) model into closer 
agreement with the U. S. Charts. Also, for  the region around the Caspian Sea, the observed change 
in the horizontal intensity is about 30y per  year less than that computed. Changing the computed 
rate by this amount would again result in better agreement with the U. S. Charts. Other regional 
deviations since 1960 were noted. In Europe and North America, the observed change in Z is 
about 15y per  year less than that computed; in  Europe and South America, the variation in H is 
about 15y per  year greater than that computed; in Central America, the variation in H is about 
30y per year less than that computed. The secular change in declination appears to be 1to 2 
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minutes per year less than that computed in Europe and most of Russia, 2 to 4 minutes per year 
less in South America, and up to 10 minutes per year less along the northern coast of Scandinavia 
and Russia. 

Thus, the present model apparently produces patterns of secular change that may, in general, 
be smoother than the observed changes, but it would be hard to improve the representation real­
istically over the whole sphere, using the present sparse data set. However, these comparisons 
do suggest that the user of the GSFC(12/66) model as a reference beyond 1965 should be wary of 
possible deviations of the order of magnitude indicated above. 

DRIFT OF HARMONIC COMPONENTS 

Figure 1, a plot of g and h harmonic vectors, displays one aspect of secular change. The 
trace of the individual components is given from 1900 to 1970, with the arrow at the later date, for 
the components ( g l l ,  hll) through (g,6 , h:). The scale is in gammas and must be divided by 5 
for  the (g51, h;) through ( g :  , h,6) traces. Also, the scale is broken for the large h,' com­
ponent. This figure is very similar to one that Cain and Hide (1966) show for  the results of an 
earlier analysis. A single curved arrow is used for the whole interval without indicating the lo­
cation of the points for the years  between 1900 and 1970; however, a detailed inspection of the data 
revealed that the years f a l l  almost uniformly along each path. 

Consideration of the westward drift in terms of harmonic components was first discussed by 
Carlheim-Gyllensktild, who deduced that the harmonic components of the first few terms drifted 
westward at an increasing rate according to the degree of the expansion. Bartels disagreed with 
this deduction on the basis of his analysis of data from the period 1902-1920 (cf. Chapman and 
Bartels, 1940, p. 666). Phase changes for the spherical harmonics a r e  also discussed in several 
later works (cf. Nagata, 1962) which conclude that all components up to (4,4)* drift westward with 
the exception of (3, 2). 

Figure 1 supports the general pattern of westward drift as indicated by the number of com­
ponents moving clockwise about the origin. The components predominantly moving westward are 
(2, l) ,  (2,2), (3, 3), (4, l),  (4,2), (4, 3), (5,4), (6, l),(6,2), (6, 3); those predominantly moving east­
ward a r e  (3,2), (5,l)  and (5,2). The others tend to be special cases. For example, (3 , l )  and (4,4) 
and (6,5) show a large amplitude change and move predominantly westward; (5,3) and (6,4) show 
a large amplitude change and move predominantly eastward. The dipole term (1, l )  is drawn with 
a bar across at the 1900 starting point. It traces out from 1900 to about 1920 in an increasing-
amplitude, eastward direction and then suddenly reverses and overlays itself with a slight west­
ward motion. A s  pointed out earlier, it would be unwise to infer too much from this reversal 
before a systematic analysis is performed that includes pre-1900 data. 

*The notation (n,m) is used here to denote the components (g,", h:). 
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Figure 1-GSFC(12/66) coefficients 1900 to 1970. 
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The more constant and characteristic feature of this diagram, which was also discussed by 
Cain and Hide (1966), is that-with the exception of the (6, l )  and (5,3) traces-both' eastward- and 
westward-moving components have a clockwise curl. 

CHANGES IN  SURFACE FEATURES 

Bullard et al. (1950) treated the question of westward drift by considering the 'tnon-dipole" 
field. This they defined by vectorially subtracting the eccentric-dipole field from a real field. 
This subtraction is commonly performed because the dipole contribution is so much larger than 
the others, appears to change differently, and thus may have a different physical basis. However, 
the absolute change in the (1,l) component is not disproportionate to that in the other harmonic 
t e rms  (Figure 1). The small angular change in  its phase is due to its relatively large amplitude 
and a reversal of trend. At this juncture we shall discuss features pertaining to the whole field. 
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A cursory inspection of some of the surface features confirms the general westerly motion of 
the field depicted by our model. The 0.23-degree-per-year drift of the Brazilian minimum in 
total field for this model has already been discussed (Cain, Langel, and Hendricks, 1967). The 
Siberian high in F at the surface is estimated by the model to be located at 61.8"N, 107.6"E in 
1960 and moving at a rate of 0;03 degree per year north in latitude and 0.1 degree per year west 
in longitude. The Canadian high is also moving north from its 1960 position of 56.7"N, 98.0"W at 
a rate  of 0.08 degree per  year, but has an easterly drift of about 0.03 degree per year. 

POSITION OF POLES 

The GSFC(12/66) model shows both the north and south dip poles moving northwesterly. The 
change in position of these two points for the period of the data is shown in Table 1. 

The 1965 latitude values agree exactly Table 1 
with those adopted for the U. S .  (Hurwitz Drift

1 
of Dip Poles-GSFC(12/66) Model. 

et al., 1966) and for the U. K. (Leaton, Malin, 
and evans, 1965) World Magnetic Charts but Date 

North Dip Pole South Dip Pole 

the longitude values differ by a few tenths of 
(degrees) (degrees) 

a degree. 72.3 S, 153.2 E 

Although the positions of the computed 68.8 S, 144.7 E 

dipoles varied smoothly over the period 66.7 S, 140.7 E 
1900-1965, the direction of motion of the di­
pole appeared to reverse, as already indi- 65.5 S, 140.3 E 

. .~ 

cated in Figure 1. The positions of the bo­

real  point a r e  given in Table 2. After the Table 2 

reversal near 1920, the pole began to move 

westward at a current rate of about 0.07 de- North Dipole Location - GSFC(12/66) Model. 


I_~__ -~ _ _ _ - __  .. 

gree per year. Westward 
Date Latitude Longitude Drift Rate 

The 1965 location given here can be com- (degrees) (degrees) (degrees/year) 
... . - ._

pared with the 78.6"N, 70.4"W position given 1900 79.0 N 69.0 W 
by Leaton, Malin, and Evans (1965) and the -0.03 
78.6"N, 70.0"W position given by Hurwitz e t  1910 78.8 N 68.6 W 

-0.01
al. (1966). 1920 78.7 N 68.5 W 

0.01 
1930 78.7 N 68.6 W 

0.02 
DECREASE IN MAGNETIC MOMENT 1940 78.7 N 68.8 W 

OF DIPOLE 
1950 78.7 N 69.2 W 

0.04 

The first three te rms  of the expansion 1960 78.7 N 69.7 W 
0.05 

can be used to compute an equivalent dipole 0.07 
moment and equatorial field (Chapman and 1965 78.8 N 70.0 W 

..I__ - . .  
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Bartels, 1940, p. 642). With a value of a = Table 3 


6.3712 X lo8cm for a mean radius, the value Dipole Moment and Horizontal Field of 

of M and H, are given in Table 3. Since field Equivalent Dipole. 


reversals are believed to have occurred in 
geological times (Cox et al., 1967), it has re­
cently become popular (Leaton and Malin, 
1967; McDonald and Gunst, 1967) to specu­
late on the demise of the main-field dipole 
(about 3700-4000 A.D.) by extrapolating a 
linear trend from such data as the above. 
Note, however, the tendency toward a re­
duction in the rate of decrease. Since our 
analysis included data for a time spanduring 
which there is only a 3-percent change in M ,  

CONCLUSIONS 

Date (r) 
1900 8.298 0.3209 

1920 8.197 0.3170 

1940 8.105 0.3134 

1960 8.023 0.3102 

Ho 

extrapolations to zero are most untrustworthy. 

Since the GSFC(12/66) field analysis was performed on survey data without correcting them 
for  short-period fluctuations such as Dst and Sq, it is remarkable that the main patterns of secular 
change represented agree so closely with earlier analyses in which the data were subjected to a 
careful screening and correction process. The main defects of the model result from the irregu­
lar regional changes superimposed on the general trends and the use of a parabolic representation 
over too long an interval. Therefore, extrapolation of the model to epochs beyond the last data 
used (1965.8) will be increasingly in error-by as much as a few tens of gammas per year, in 
some areas. This deviation may seem large, but better forecasts can hardly be made until recent 
satellite survey data a r e  evaluated over a year o r  more, to allow for  a more accurate global esti­
mate of secular change. This work does indicate that there is no special need for fixed repeat 
stations fo r  monitoring the secular change. Although data from such stations were indeed a valu­
able addition to the data set, the analysis ignored the fact that they remained in one location. It 
may later be possible to monitor the main field using only satellite data corrected for  time vari­
ations as derived from the fluctuations observed at the surface observatories. 

The westward motion of most of the spherical-harmonic vectors confirms earlier observa­
tions. The clockwise curvature pattern for  almost all components is noted for the first time as 
a curious and unexplained fact. The sudden reversal of the eastward drift of the dipole poles 
near 1920 may be due to inaccuracies in the analysis resulting partly from the poor distribution 
of data. On the other hand, the change may be connected with the 1900-1920 anomalous increase 
of the earth's rate of rotation. The slight slowing of the rate of decrease of the moment of the 
earth's main dipole suggests that the field is not beginning a cycle of reversal. To check such 
suggestions requires subjecting a much longer span of magnetic-field observations to a con­
sistent analysis. 
Goddard Space Flight Center 

National Aeronautics and Space Administration 
Greenbelt, Maryland, November 22, 1967 
841-12-02-06-51 
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Figure B1-Geomagnetic secular change in minutes per year, inclination, epoch 1912.5. Vestine et  al .  (1947). 
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Figure B2-Geomagnetic secular change in minutes per year, inclination, epoch 1912.5. GSFC (12/66). 
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Figure B3-Geomagnetic secular change in minutes per year, inclination, epoch 1922.5. Vestine et al. (1947). 



Figure B4-Geomagnetic secular change in minutes per year, inclination, epoch 1922.5. GSFC (12/66). 



Figure B5-Geomagnetic secular change in minutes per year, inclination, epoch 1932.5. Vestine et a l .  (1947). 
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Figure B6-Geomagnetic secular change in minutes per year, inclination, epoch 1932.5. GSFC (12/66). 



Figure B7-Geomagnetic secular change in minutes per year, inclination, epoch 1942.5. Vestine et al .  (1947). 
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Figure B8-Geomagnetic secular change in  minutes per year, inclination, epoch 1942.5. GSFC (12/66). 



Figure B9-Geomagnetic secular change in gammas per year, horizontal component, epoch 1912.5. Vestine et 01. (1947). 



Figure B1 0-Geomagnetic secular change in gammas per year, horizontal component, epoch 1912.5. 
GSFC (12/66). 



Figure 811-Geomagnetic secular change in gammas per year, horizontal component, epoch 1922.5. Vestine et 0 1 .  (1947). 



Figure B12-Geomagnetic secular change in  gammas per year, horizontal 
component, epoch 1922.5. GSFC (12/66). 



Figure B13-Geomagnetic secular change in gammas per year, horizontal component, epoch 1932.5. Vestine et a l .  (1947). 



~~ 

Figure B14-Geomagnetic secular change in gammas per year, horizontal 
component, epoch 1932.5. GSFC (12/66). 



Figure B15-Geomagnetic secular change in gammas per year, horizontal component, epoch 1942.5. Vestine et al.  (1947). 



Figure B16-Geomagnetic secular change in gammas per year, horizontal 
component, epoch 1942.5. GSFC (12/66). 



Figure 817-Geomagnetic secular change in gammas pet year, north component, epoch 1912.5. Vestine et al. (1947). 





Figure B19-Geomagnetic secular change in gammas per year, north component, epoch 1922.5. Vestine et al .  (1947). 



Figure B2O-Geomagnetic secular change in gammas per year, north component, 
epoch 1922.5. GSFC (12/66). 



Figure B21-Geomagnetic secular change in gammas per year, north component, epoch 1932.5. Vestine et al. (1947). 



Figure B22-Geomagnetic 	 secular change in gammas per year, north component, 
epoch 1932.5. GSFC (12/66). 



Figure B23-Geomagnetic secular change in gammas per year, north component, epoch 1942.5. Vertine et  al .  (1947). 



Figure B24-Geomagnetic secular change in gammas per year, north component, 
epoch 1942.5. GSFC (12/66). 



Figure 825-Geomagnetic secular change in gammas per year, east component, epoch 1912.5. Vestine et ai .  (1947). 



Figure B26-Geomagnetic secular change i n  gammas per year, east component, 
epoch 1912.5. GSFC (12/66). 



Figure B27-Geomagnetic secular change in gammas per year, east component, epoch 1922.5. Vestine et al.  (1947). 
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Figure B28-Geomagnetic secular change in gammas per year, east component, 
epoch 1922.5. GSFC ( 1  2/66). 



Figure B29-Geomagnetic secular change in gammas per year, east component, epoch 1932.5. Vestine et al .  (1947). 



Figure B3O-Geomagnetic secular change in  gammas per year, east component, 
epoch 1932.5. GSFC (12/66). 



Figure B31-Geomagnetic secular change in gammas per year, east component, epoch 1942.5. Vestine et al. (1947). 
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Figure B32-Geomagnetic secular change in gammas per year, east component, 
epoch 1942.5. GSFC (12/66). 



Figure B33-Geomagnetic secular change in gammas per year, vertical component, epoch 1912.5. Vestine et  al.  (1947). 



Figure B34-Geomagnetic secular change in gammas per year, vertical component, 
epoch 1912.5. GSFC (12/66). 



Figure Bq5-Geomagnetic secular change in gammas per year, vertical component, epoch 1922.5. Vestine et a l .  (1947). 



Figure B36-Geomagnetic secular change in gammas per year, vertical component, 
epoch 1922.5. GSFC (12/66). 



Figure B37-Geomagnetic secular change in gammas per year, vertical component, epoch 1932.5. Vestine et  al.  (1947). 



Figure B38-Geomagnetic secular change in  gammas per year, vertical component, 
epoch 1932.5. GSFC (12/66). 



Figure B39-Geomagnetic secular change in gammas per year, vertical component, epoch 1942.5. Vestine et 01.  (1947). 



Figure 640-Geomagnetic secular change in gammas per year, vertical component, 
epoch 1942.5. GSFC (12/66). 



Figure B41-Geomagnetic secular change in gammas per year, total intensity, epoch 1912.5. Vestine et al. (1947). 



Figure B42-Geomagnetic secular change in gammas per year, total intensity, 
epoch 1912.5. GSFC (12/66). 
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Figure 843-Geomagnetic secular change in gammas per year, total intensity, epoch 1922.5. Vestine et  ai .  (1947). 
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Figure B44-Geomagnetic secular change in gammas per year, total intensity, 
epoch 1922.5. GSFC (12/66). 
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Figure B45-Geomagnetic secular change in gammas per year, total intensity, epoch 1932.5. Vestine et (1947). 



Figure 646-Geomagnetic secular change in gammas per year, total intensity, 
epoch 1932.5. GSFC (12/66). 
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Figure B47-Geomagnetic secular change in gammas per year, total intensity, epoch 1942.5. Vestine et al. (1947). 



Figure B48-Geomagnetic secular change in gammas per year, total intensity, 
epoch 1942.5. GSFC (12/66). 
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Figure C1-Geomagnetic secular change in minutes per year, inclination, 
epoch 1965.0. GSFC (12/66). 
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Figure C2-Geomagnetic secular change in gammas per year, horizontal 
component, epoch 1965.0. GSFC (12/66). 



Figure C3-Geomagnetic secular change in  gammas per year, north component, 
epoch 1965.0. GSFC (12/66). 



Figure C4-Geomagnetic secular change in  gammas per year, east component, 
epoch 1965.0. GSFC (1 2/66). 



Figure C5-Geomagnetic secular change in gammas per year, vertical component, 
epoch 1965.0. GSFC (12/66). 
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Figure C7-D in degrees, epoch 1965.0. GSFC (12/66). 
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Figure C9-H in gauss, epoch 1965.0. GSFC (12/66). 
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Figure C10-X i n  gauss, epoch 1965.0. GSFC (12/66). 



Figure C11-Y in gauss, epoch 1965.0. GSFC (12/66). 
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Figure C12-Z in gauss, epoch 1965.0. GSFC (12/66). 



Figure C13-F in gauss, epoch 1965.0. GSFC (12/66). 
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